Wonders of the Invisible World: Pseudomonas syringae, the Ice Maker
(1) Universitas Negeri Makassar
(2) Universitas Negeri Makassar
(3) Universitas Negeri Makassar
(*) Corresponding Author
Abstract
This literature review explores the multifaceted role of Pseudomonas syringae, a bacterium renowned for its ice-nucleating properties. Pseudomonas syringae significantly influences atmospheric processes, agriculture, and various ecosystems. These bacteria, equipped with ice nucleation proteins (INPs), facilitate ice formation at temperatures warmer than the typical freezing point, impacting weather patterns by initiating snow and hail formation. While its ice-nucleating activity can lead to frost damage in agriculture, it is also harnessed for artificial snow production. This review synthesizes findings on the bacterium's characteristics, morphology, physiology, and ecology, drawing from diverse studies. It highlights its widespread presence in various environments, including plant surfaces, water bodies, and atmospheric samples, emphasizing its adaptability and ecological significance. By employing content analysis on secondary data sources, this study provides a comprehensive understanding of Pseudomonas syringae's unique ability to mediate ice formation and its broader implications for environmental balance and biotechnological applications.
Keywords: INA bacteria, Pseudomonas syringae, ice formation, InaZ protein
Full Text:
PDFReferences
Arhamar, A. M., & Ismail, I. (2025). Filsafat Cinta: Jalan Menuju Kebenaran dan Makna Hidup. JIIP-Jurnal Ilmiah Ilmu Pendidikan, 8(1), 1162-1168.
Asfar, A. I. T. 2019. Analisis Naratif, Analisis Konten, dan Analisis Semiotik. Researchgate.net.
Barranquero, G. J. A., Cazorla, F. M., & de Vicente, A. (2019). Pseudomonas syringae pv. Syringae associated with mango trees, a particular pathogen within the “hodgepodge” of the Pseudomonas syringae complex. In Frontiers in Plant Science (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.00570
Bieber, P., & Borduas-Dedekind, N. (2024). High-speed cryo-microscopy reveals that ice-nucleating proteins of Pseudomonas syringae trigger freezing at hydrophobic interfaces. Sci. Adv, 10, 6606. https://doi.org/10.5281/zenodo.8277977
Bieber, E. J., & Borduas-Dedekind, N. (2024). Protein-Protein Interactions and Ice Nucleation Activity in Pseudomonas syringae. Journal of Biological Science and Education, 12(1), 45-56.
Bundalovic-Torma, C., Lonjon, F., Desveaux, D., & Guttman, D. S. (2025). Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. https://doi.org/10.1146/annurev-phyto-021621
Butsenko, L. M., Pasichnyk, L. A., & Kolomiiets, Y. V. (2020). Biological properties of morphological dissociants Pseudomonas Syringae Pv. Atrofaciens. Biological Systems: Theory and Innovation, 11(1), 28–37. https://doi.org/10.31548/biologiya2020.01.028
Clarke, C. R., Cai, R., Studholme, D. J., Guttman, D. S., & Vinatzer, B. A. (2010). Pseudomonas syringae Strains Naturally Lacking the Classical P. syringae hrp/hrc Locus Are Common Leaf Colonizers Equipped with an Atypical Type III Secretion System. Molecular Plant-Microbe Interactions MPMI, 23(2), 198–210. https://doi.org/10.1094/MPMI
Cochet, N., & Widehem, P. (2000). MINI-REVIEW Ice crystallization by Pseudomonas syringae.
Córdova, P., Rivera-González, J. P., Rojas-Martínez, V., Fiore, N., Bastías, R., Zamorano, A., Vera, F., Barrueto, J., Díaz, B., Ilabaca-Díaz, C., Bertaccini, A., & Higuera, G. (2023). Phytopathogenic Pseudomonas syringae as a Threat to Agriculture: Perspectives of a Promising Biological Control Using Bacteriophages and Microorganisms. In Horticulturae (Vol. 9, Issue 6). MDPI. https://doi.org/10.3390/horticulturae9060712
De Araujo, G. G., Rodrigues, F., Gonçalves, F. L. T., & Galante, D. (2019). Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-44283-3
Deininger, C. A., Mueller, G. M., & Wolber, P. K. (1988). Immunological Characterization of Ice Nucleation Proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola. In JOURNAL OF BACTERIOLOGY (Vol. 170, Issue 2). https://journals.asm.org/journal/jb
Du, R., Du, P., Lu, Z., Ren, W., Liang, Z., Qin, S., Li, Z., Wang, Y., & Fu, P. (2017). Evidence for a missing source of efficient ice nuclei. Scientific Reports, 7. https://doi.org/10.1038/srep39673
Fauziyah. (2022). Identifikasi Morfologi dan Pewarnaan Gram Pseudomonas syringae. Jurnal Biologi Indonesia, 18(3), 211-218.
Fu’adah, K., Sari, S. L. A., & Susilowati, A. (2022). Ice Nucleation Active bacteria in Mount Lawu forest, Indonesia: 1. Isolation and estimation of bacterial populations on lichens. Asian Journal of Forestry, 1(2). https://doi.org/10.13057/asianjfor/r010205
Gomila, M., Busquets, A., Mulet, M., García-Valdés, E., & Lalucat, J. (2017). Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Frontiers in Microbiology, 8(DEC). https://doi.org/10.3389/fmicb.2017.02422
Gutiérrez-Barranquero, J. A., Cazorla, F. M., & de Vicente, A. (2019). Pseudomonas syringae pv. Syringae associated with mango trees, a particular pathogen within the “hodgepodge” of the Pseudomonas syringae complex. In Frontiers in Plant Science (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.00570
Han, Y. J., Song, H. J., Lee, C. W., Ly, N. H., Joo, S. W., Lee, J. H., Kim, S. J., & Park, S. Y. (2017). Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments. International Journal of Biological Macromolecules, 94, 634–641. https://doi.org/10.1016/j.ijbiomac.2016.10.062
Hanlon, R., Jimenez-Sanchez, C., Benson, J., Aho, K., Morris, C. E., Seifried, T. M., Baloh, P., Grothe, H., & Schmale, D. (2023). Diversity and ice nucleation activity of Pseudomonas syringae in drone-based water samples from eight lakes in Austria. PeerJ, 11. https://doi.org/10.7717/peerj.16390
Imani, S. P., Setiawati, A., Oktaviani, L., Surtikanti, H. K., & Priyandoko, D. (2024). Bakteri dalam proses produksi gas metana dari tumpukan sampah organik: Kajian pustaka. Bioculture Journal, 1(2).
Kutschera, A., Schombel, U., Schwudke, D., Ranf, S., & Gisch, N. (2021). Analysis of the structure and biosynthesis of the lipopolysaccharide core oligosaccharide of Pseudomonas syringae pv. tomato DC3000. International Journal of Molecular Sciences, 22(6), 3250.
Lindow, S. E. (1993). Novel Method for Identifying Bacterial Mutants with Reduced Epiphytic Fitness. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY (Vol. 59, Issue 5). https://journals.asm.org/journal/aem
Majorina, M. A., Veselova, V. R., & Melnik, B. S. (2022). The influence of Pseudomonas syringae on water freezing and ice melting. PLoS ONE, 17(5 May). https://doi.org/10.1371/journal.pone.0265683
Marera, A. (2022). Dinamika Pembelajaran Masa Pandemi Covid-19: Kekhawatiran Learning Loss Pada Siswa. Diklabio: Jurnal Pendidikan Dan Pembelajaran Biologi, 6 (2), 160–172.
Masnilah, R., Abd L.,Tutung H., A., & Luqman Q., A., (2013). KARAKTERISASI BAKTERI PENYEBAB PENYAKIT HAWAR DAUN EDAMAME DI JEMBER. Berkala Ilmiah PERTANIAN., 1(1), 10–14.
Missa, H. & Anselmus, B., (2019). Isolasi dan Identifikasi Populasi Bakteri Ice Nucleation Active pada Jeruk Keprok Soe Di Dataran Tinggi Mutis Provinsi Nusa Tenggara Timur. SEBATIK, 1410–3737.
Missa, H., & Baunsele, A. B. (2020). JENIS DAN POPULASI BAKTERI ICE NUCLEATION ACTIVE PENYEBAB LUKA BEKU PADA DAUN JERUK KEPROK SOE DI DATARAN TINGGI MUTIS. Agro Bali: Agricultural Journal, 3(2), 127–135. https://doi.org/10.37637/ab.v3i2.585
Morris, C. E., Kinkel, L. L., Xiao, K., Prior, P., & Sands, D. C. (2007). Surprising niche for the plant pathogen Pseudomonas syringae. Infection, Genetics and Evolution, 7(1), 84–92. https://doi.org/10.1016/j.meegid.2006.05.002.
Morris, C. E., Caroline L, Monteil, & Berge, O. (2013). The Life History of Pseudomonas syringae: Linking Agriculture to Earth System Processes. Annu. Rev. Phytopathol., 51(10.1146/annurev-phyto-082712–102402).
Noviponiharwani, A, S. W., & Baharuddin, S. (2023). Studi Literatur Identifikasi Bakteri Coliform pada Air Tahu yang Dijualbelikan di Indonesia. Lontara: Journal of Health Science and Technology, Vol, 4(1), hal, 75-80.
Pandey, R., Usui, K., Livingstone, R. A., Fischer, S. A., Pfaendtner, J., Backus, E. H. G., Nagata, Y., Fröhlich-Nowoisky, J., Schmüser, L., Mauri, S., Scheel, J. F., Knopf, D. A., Pöschl, U., Bonn, M., & Weidner, T. (2016). Ice-nucleating bacteria control the order and dynamics of interfacial water. Science Advances, 2(4). https://doi.org/10.1126/sciadv.1501630
Pavankumar, T. L., Mittal, P., & Hallsworth, J. E. (2021). Molecular insights into the ecology of a psychrotolerant Pseudomonas syringae. Environmental Microbiology, 23(7), 3665–3681. https://doi.org/10.1111/1462-2920.15304
Pusvita, D., Ayu, A., & Siti, S. (2024). Peran Mikroorganisme Dalam Mendukung Pertumbuhan Tanaman di Lahan Gambut yang Terdegradasi. Prosiding SEMNASBIO, Universitas Negeri Padang.
Putri, A. E. (2019). Evaluasi Program Bimbingan dan Konseling: Sebuah Studi Pustaka. Jurnal Bimbingan Konseling Indonesia, Vol. 4(2), hal. 39-42.
Rahardjo, M. (2017). Studi Kasus dalam Penelitian Kualitatif: Konsep dan Prosedurnya. Repository.uin-malang.
Rahman, H., Mutia, R., Nur, S. (2023). Upaya Penanganan Stunting di Indonesia: Analisis Bibliometrik dan Analisis Konten. Jurnal Ilmu Pemerintahan Suara Khatulistiwa (JIPSK), Vol. 8(1), hal. 44-59.
Ramadhani, A. G. & Rezania, A. (2023). Kajian Literatur Identifikasi Pencemaran Bakteri Escherichia coli dan Coliform Non-Fekal pada Pada Minuman Olahan Teh. Eperintis.ums.ac.id.
Roeters, S. J., Golbek, T. W., Bregnhøj, M., Drace, T., Alamdari, S., Roseboom, W., Kramer, G., Šantl-Temkiv, T., Finster, K., Pfaendtner, J., Woutersen, S., Boesen, T., & Weidner, T. (2021). Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21349-3
Schmid, D., Pridmore, D., Capitani, G., Battistutta, R., Neeser, J. R., & Jann, A. (1997). Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae. FEBS Letters, 414(3), 590–594. https://doi.org/10.1016/S0014-5793(97)01079-X
Sofiah, R., Suhartono, & Ratna. (2020). Analisis Karakteristik Sains TEKNOLOGI Masyarakat (STM) Sebagai Model Pembelajaran: Sebuah Studi Literatur. Pedagogi: Jurnal Penelitian Pendidikan, Vol. 7(1), hal. 1-18.
Suyono, Y. & Farid, S. (2011). Identifikasi dan Karakterisasi Bakteri Pseudomonas pada Tanah yang Terindikasi Terkontaminasi Logam. Jurnal Biopropal Industri, Vol. 2(1), 8-13.
Varma, A., Abbott, L., Werner, D., & Hampp, R. (2007). Plant Surface Microbiology. Springer Berlin Heidelberg. https://books.google.co.id/books?id=747-kZT60dcC
Wardhani, W. K. & Harmin, S. T. (2020). Studi Literatur Alternatif Penanganan Tumpahan Minyak Mentah Menggunakan Bacillus subtilis dan Pseudomonas putida (Studi Kasus: Tumpahan Minyak Mentah Sumur YYA-1). Jurnal Teknik Its, Vol. 9(2), hal. 97-102.
Wu, Q., An, N., Fang, Z., Li, S., Xiang, L., Liu, Q., Tan, L., & Weng, Q. (2024). Characteristics and whole-genome analysis of a novel Pseudomonas syringae pv. tomato bacteriophage D6 isolated from a karst cave. Virus Genes, 60(3), 295–308. https://doi.org/10.1007/s11262-024-02064-9
Xin, X. F., Kvitko, B., & He, S. Y. (2018). Pseudomonas syringae: What it takes to be a pathogen. In Nature Reviews Microbiology (Vol. 16, Issue 5, pp. 316–328). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2018.17
Zuhairi & Ahmad, B. (2020). Aktualisasi Nilai-Nilai Moderasi dalam Pandangan Islam. Tapis: Jurnal Penelitian Ilmiah, Vol. 5(2), hal. 158-165.
Zuraida, Imas, L., & Ziqo, I. A. (2021). Studi Literatur Hasil Pemeriksaan Tcm (Tes Cepat Molekuler), Mikroskopik Bta Dan Kultur Pada Suspek Tb (Tuberkulosis). Anakes: Jurnal Ilmiah Analis Kesehatan, Vol. 7(1), hal. 83-87.
DOI: https://doi.org/10.31327/jbse.v7i1.2373
Article Metrics
Abstract view : 361 timesPDF - 144 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 A. S. Muhammad Arhamar, Septian Dwi Cahyo. Am, Yusmina Hala

This work is licensed under a Creative Commons Attribution 4.0 International License.
INDEXED BY:
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------