

Agribusiness Journal

https://usnsj.id/index.php/AJ journalagribusiness@gmail.com e-ISSN: 2548-2211, p-ISSN: 2548-379X

Creative Commons Attribution 4.0 International License

DOI: https://doi.org/10.31327/aj.v6i2.2032

Marketing Mix Analysis Of Interest In Oyster Mushroom Cultivation

Fajar Handika*, Andi Sitti Halimah, Nurhaeda

¹Agribusiness Study Program, Universitas Muhamhadiyah Parepare, Indonesia

²Universitas Sembilanbelas November Kolaka, Indonesia

*Correspondence email: fjrhandika@gmail.com

Abstract

Oyster mushroom is a saprophytic plant that lives on softwood and obtains food by utilizing the remains of organic matter. This study aims to analyze how much the new value of marketing has on oyster mushroom cultivation in Lapadde Village, Ujung District, Parepare City, and to find out what variables in the marketing mix influence interest in oyster mushroom cultivation in Lapadde Village, Ujung District, Parepare City. The method of determining the sample in this study used purposive sampling, purposive sampling, which is a technique based on certain considerations made by the researcher based on the characteristics or characteristics of the previously known population, then the researcher determined based on his considerations. The method of collecting data is by interviews, questionnaires, observation, and documentation. Instrument testing is done by testing the validation and reliability using the SPSS program. The data analysis method used is quantitative data analysis to identify the marketing mix in analyzing cultivation interest. So the results of this study indicate that the marketing mix which consists of price and promotion variables has a significant influence with a significance value below 0.05% while the product and place variables do not have a significant effect. While the marketing mix variable simultaneously influences cultivation interest.

Keywords: Marketing mix, oyster mushroom

A. Introduction

Oyster mushroom is a saprophytic plant that lives in softwood and obtains food by utilizing the remains of organic matter. Oyster mushroom is a plant that does not have chlorophyll (does not have green leaf substance) so life and oyster mushrooms are very dependent on organic matter absorbed for growth and development purposes.

Indonesia is a country with a tropical climate, with humidity ranging from 70-90% and an average temperature of 30%°C. These factors are optimal for the growth and development of mushrooms. The importance of mushrooms in human life varies. Some are beneficial both as food ingredients directly, such as some well-known mushrooms, including mushrooms, champignons, shitake, mulch, straw mushrooms, and so on, as well as indirect food ingredients, for example, mushrooms that are active in the process of making this type of mushroom. fermented foods such as oncom, soy sauce, tempeh, sausage, taco, yoghurt, cheese, and so on.

In the city of Parepare, especially in Ujung District, Lapadde Sub-District, mushroom cultivation has started to be carried out by one of the Jamoerin Cafe UMKMs, which apart from processing mushrooms in this cafe, also cultivates oyster mushrooms. Business opportunities for mushroom cultivation, especially in Ujung District, are still wide open due to the production of jamoerin café, which produces approximately 20 kg per month, while market demand is quite

large. This is because processed oyster mushrooms are loved so much, they are still relatively new to consuming mushrooms, and they also have many benefits so demand is sometimes not proportional to production. The method of cultivation and processing of oyster mushrooms is still very common among the public so it can be said that competitors for similar businesses are said to be minimal.

This is an opportunity for the Lapadde Village, Ujung District community to also participate in cultivating oyster mushrooms. Which is a big influence when viewed from the marketing mix. Mushroom production is the main thing regarding cultivation. There are still many people who are not or are still unfamiliar with oyster mushroom cultivation, so a deeper introduction to the community is needed, of course, through promotional channels such as what is done by Jamoerin cafe through processed mushrooms in the cafe.

The marketing mix proposed by Alma (2016) is a strategy to includes marketing activities to find the maximum combination to bring satisfactory results. The marketing mix consists of four components or is called 4P, namely Product, Price, Place, and Promotion, based on opinion (Kotler and Armstrong, 2016 in Ramadhan, 2020), the marketing mix includes four (4) main things and can be controlled by the company which includes product, price, place, and promotion. So that is the basis of the theory of how variables from the marketing mix become indicators in determining the interest in oyster mushroom cultivation for the community, especially in Ujung District, Lapadde Village, Parepare City.

The marketing mix that affects the interest in cultivating the people of Ujung District can be seen in how mushroom products can make people interested in cultivating them, and how the marketed prices can make people interested in cultivating, another variable is the place where the climate in Parepare city is also suitable for doing so. Oyster mushroom cultivation, this can be seen from how Jamoerin Cafe succeeded in cultivating oyster mushrooms. The last variable is the promotion of how Jamoerin cafes aside from cultivation, are cafes that usually sell processed food from oyster mushrooms, so indirectly promoting the results of mushroom cultivation is carried out so that it can be said that the community can experience how processed oyster mushrooms can be cultivated and of course the mushrooms can also benefit.

Research related to oyster mushroom cultivation itself has not been carried out much and not much business related to mushroom cultivation has been carried out so that is the reason for conducting research as well as introducing oyster mushroom cultivation to the community, especially to the people of Lapadde Village, Ujung District of Parepare City.

B. Methodology

Population and Research Sample

This research was conducted in Lapadde Village, Ujung District, Parepare City, research was carried out from November 2022 to January 2023. (Sugiono, 2016 Fajri, et al. 2022) suggest that the population is a generalized area consisting of objects/subjects that have certain qualities and characteristics determined by researchers to study and then draw conclusions. Determination of the sample in this study used purposive sampling, purposive sampling, namely a technique based on a certain consideration made by the researcher based on the characteristics or characteristics of the population that was previously known, then the researcher determined based on his considerations (Notoadmodjo. 2012 in Kuddus. 2019).

According to Roscoe, an appropriate sample size for research is 30 to 500. In addition, if a multivariate analysis is carried out in the study (correlation or multiple linear regression), then the number of sample members is at least 10 times the variable under study. So the sample in this study is 50 samples because it has 5 variables (4 dependent variables and 1 independent variable).

Data Analysis Techniques

The techniques used in collecting data in this study were interviews, questionnaires, observation, and documentation. (Rahayu et al, 2022). Data analysis used in this research uses quantitative data analysis which is used to analyze marketing mix elements that have a significant influence on cultivation interest. The data analysis methods used in this research include taking questionnaire data using a Likert Scale and processing data with Multiple Linear Regression Analysis, T-test, F Test.

According to Sugiono (Chandra and Suryaningsih, 2019) to find out the independent variables on the dependent variable, the Multiple Linear Regression formula is used as follows:

$$Y = a + b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + e$$

Y = Community Cultivation Interests

a = Constants Of Regression Decisions

b = Regression Coefficient And Variables X1 To X4

- Variable X₁ (Product).
- Variable X₂ (Price).
- Variable X₃ (Place).
- VariableX₄ (Promotion).

e = error

The T-test was carried out to test the independent variables (Product, Price, Place, and Promotion) individually against the dependent variable (Cultivation interest). According to Sugiono (Chandra and Suryaningsih, 2019), the formula for calculating the T-test is as follows:

$$T \ Test = \frac{\sqrt{r-n}}{\sqrt{1-r^2}}$$

Information:

t = Count Value

r = Correlation Coefficient

n = Lost of Observations

The F test was carried out simultaneously to test the independent variables (Product, Price, Place, and Promotion) on the dependent variable (Cultivation Interest). According to Gujati, et al (2019), the statistics of the F Test formulation are as follows: $F Test \frac{R^2/K}{/(n-K-1)}$

Information:

F = Obtained from the distribution variable

K = Number of independent variables

 R^2 = The coefficient of multiple determination

n = Number of samples

C. Findings and Discussion

Multiple Linear Regression Analysis

m 11 44	т.		1 .	
Table I I	Linear	regression	analucic	Outnut
Table 1.1.	. Dilicai	regression	anarysis	output

Model	Unstandardized Coefficients		Т	SIG
Model	B Std. Error		<u> </u>	
(Constant)	3.017	4.419	0,683	0,498
Product (X1)	0,048	0,138	0,346	0,731
Price (X2)	0,342	0,143	2.383	0,021
Place (X3)	0,149	0,120	1.237	0,223
Promotion(X4)	0,315	0,152	2.069	0,044

Source: Primary data will be processed in 2023.

Based on table 1.1. The model used in estimating the model is $Y = a + b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + e$. From the results of multiple linear regression in Table 1.1, we can see the multiple linear regression equation as follows:

Y = (3,017) + (0,048)X1 + (0,342)X2 + (0,149)X3 + (0,315)X4

With the following Interpretation results:

- 1. a = (3,017) The regression constant value is 3.017, which indicates the value of the interest in oyster mushroom cultivation in the Lapadde village community is (3.017). If the other variables, namely the independent variables (Product, Price, Place, and Promotion) are equal to Zero or have a constant value. This also means that the community's desire or interest in cultivation is 3.017 before external factors, namely the marketing mix.
- 2. $X_1 = 0.048$ The regression coefficient value is 0.048. This means that for every increase in the product variable by 1%, the community's interest in cultivating will increase by 0.048. If the value of the regression coefficient can be ascertained there is a positive relationship to the product variable with community cultivation interest.
- 3. $X_2 = 0.342$ The regression coefficient value is 0.342. This means that for every increase in the price variable by 1%, the community's interest in cultivating will increase by 0.342. Assuming that each independent variable has a constant value. If the regression coefficient is positive, it can be ascertained that there is a positive relationship between the price variable and community cultivation interest.
- 4. $X_{3} = 0.149$ The regression coefficient value is 0.149. This means that for every increase, which means for every increase in the place variable by 1%, the community's interest in cultivating will increase by 0.149. If the regression coefficient is positive, it can be ascertained that there is a positive relationship between the place variable and community cultivation interest.
- 5. $X_{4} = 0.315$ The regression coefficient value is 0.315. This means that for every increase, which means for every increase in the promotion variable by 1%, the community's interest in cultivating will increase by 0.315. Assuming that each independent variable has a constant value. If the regression coefficient is positive, it can be ascertained that there is a positive relationship between the promotion variable and community cultivation interest.

Uji T

Table 1.2. T Test result output

Variable	T _{count}	Table	Mark sig. Table	Significance Value Limit	Information
X1	0.346	2.014	0.731	0.05	No effect
X2	2.383	2.014	0.021	0.05	Influential
Х3	1.237	2.014	0.223	0.05	Np effect
X4	2.069	2.014	0.044	0.05	Influential

Source: Primary data will be processed in 2023.

From the results of the T-test in Table 1.15, the output of the T-test results can be stated that this variable has no partial effect on the variable of interest in cultivation.

- 1. The product variable hypothesis from the results of the T-test results in a Tcount value of 0.346 meaning that the Tcount value of the product variable is smaller than the Ttable value, which is 2.014. In addition, the significance value in the table also shows 0.731 which is certainly smaller than the significance value limit of 0.05. Therefore it can be concluded that H1 is rejected.
- 2. The price variable hypothesis from the results of the T-test results in a Tcount value of 2.381 meaning the Tcount value of the product variable is greater than the Ttable value of 2.014. In addition, the significance value in the table also shows 0.021 which is certainly smaller than the significance value limit of 0.05. Therefore it can be concluded that H1 is accepted.
- 3. 3. The hypothesis of the place variable from the results of the T-test, the Tcount value is 1.237, meaning the Tcount value of the product variable is smaller than the Ttable value, which is 2.014. In addition, the significance value in the table also shows 0.223 which is certainly smaller than the significance value limit of 0.05. Therefore it can be concluded that H1 is rejected.
- 4. The promotion variable hypothesis from the results of the T-test, the Tcount value is 2.069, meaning the Tcount value of the product variable is greater than the Ttable value, which is 2.014. In addition, the significance value in the table also shows 0.044 which is certainly smaller than the significance value limit of 0.05. Therefore it can be concluded that H1 is accepted.

F Test

Table 1.3. Output test result F

Table	F _{table}	Significance Value	Significance Value Limit
5.064	2.57	0.002	0,05

Source: Primary data will be processed in 2023.

The marketing mix hypothesis is simultaneously from Table 1.16. The results of the F test stated that the Fcount value was 5,064. This shows that the value of Fcount > Ftable where the value of Ftable is only 2.57. Likewise, the significance value of 0.002 is smaller than the significance value of 0.05. Therefore based on a decision where H1 is accepted and H0 is rejected. This means that there is a simultaneous influence of the independent variable on the dependent variable, namely Interest in Cultivation.

D. Conclusion

Variables that influence the marketing mix on interest in oyster mushroom cultivation in Lapadde Village, Ujung District, Parepare City can be shown with a Tcount value of 2.383, a regression coefficient (b2) of 0.342, and a significance value of 0.021. Because the significance

value is <0.05 and the regression coefficient has a positive value, it can be concluded that there is a positive effect of price on the interest in oyster mushroom cultivation in Lapadde Village, Ujung District, Parepare City. Likewise, with the promotion variable, there is also an influence on the interest in cultivating oyster mushrooms in Lapadde Village, Ujung District, Parepare City. This can be shown by the Tcount value of 2,069, the regression coefficient (b4) of 0.315, and a significance value of 0.044. Because the significance value is <0.05 and the regression coefficient has a positive value, it can be concluded that there is a positive effect of promotion on the interest in oyster mushroom cultivation in Lapadde Village, Ujung District, Parepare City.

E. References

- Alma, Buchari. 2016. Marketing Management And Service Marketing. Alphabet Publishers. Bandung.
- Chandra, Nurma Novia Oky, and Yasmini Suryaningsih. 2019. Marketing Mix Analysis of Interest in Buying Hydroponic Vegetables at Pokdarwis (Tourism Awareness Group). Olean, 17(1):0215–0638.
- Fajri, Chotamul, Adinda Amelya, and Suworo Suworo. 2022. The Effect of Job Satisfaction and Work Discipline on Employee Performance at PT. Indonesia Applicad. JIIP Scientific Journal of Education, 5(1):369–73.
- Kuddus, Mohammed. 2019. Relationship between personal hygiene and contact history with typhoid fever in the work area of the Kare Health Center, Madiun Regency. Thesis. Stikes Bhakti Husada Mulia Madiun. Madison.
- Rahayu, Elly, Wan M.K, dan Rohminatin Rohminatin. 2022. Analysis of Implementation of Customer Relationship Management at Safira Bakery. Journal of Science and Social Research, 5(1):37.
- Ramadhan, Syahrir. 2020. The Influence of the Marketing Mix on the Purchase Intention of Subsidized Hybrid Rice Seeds in the Kediri Region, West Lombok at PT. PERTANI (PERSERO) Kediri Production Unit. Thesis. Mataram Muhammadiyah University. Mataram.